Cardiothoracic surgery

็นพ.ชัยวุฒิ ยศถาสุโรดม กลุ่มงานศัลยกรรม สถาบันโรคทรวงอก

OUTLINE

Cardiac surgery ► Type of disease ► Cardiopulmonary bypass ► complication Thoracic surgery ► Type of disease Thoracic incision ► Complication

CARDIOPULMONARY BYPASS CIRCUIT

Figure 12-1. Basic cardiopulmonary bypass circuit with membrane oxygenator and centrifugal pump.

Fig. 36.10. Example of a complete cardiopulmonary bypass circuit. LV, left ventricle; P, pressure transducer.

OXYGENETOR

Roller Versus Centrifugal Pump

	Roller pump	Centrifugal pump
Description	Nearly occlusive	Nonocclusive
	Afterload independent	Afterload sensitive
Advantages	Low prime volume	Portable, position insensitive
0	Low cost	Safe positive and negative pressure
	No potential for backflow	Adapts to venous return
	Shallow sine-wave pulse	Superior for right or left heart bypass
	-	Preferred for long-term bypass
		Protects against massive air embolism
Disadvantages	Excessive positive and negative pressure	Large priming volume
0	Spallation	Requires flowmeter
	Tubing rupture	Potential passive backward flow
	Potential for massive air embolism	Higher cost
	Necessary occlusion adjustments	
	Requires close supervision	

Minimizing Microemboli

Membrane oxygenator, centrifugal arterial pump

Cardiotomy reservoir filter ($\leq 40 \ \mu m$)

Arterial line filter/bubble trap ($\leq 40 \ \mu m$)

Keep temperature differentials <8–10°C

Prime with carbon dioxide flush; recirculate with saline and filter (5 $\mu m)$

Prevent air entry into the circuit Snug purse-string sutures Three-way stopcocks on all sampling ports Meticulous syringe management Adequate cardiotomy reservoir volume (for debubbling) Avoid excessive suction on vents One-way valved purge lines for bubble traps Use transesophageal echocardiography to locate trapped intracardiac air; de-air thoroughly

Wash blood aspirated from the surgical field

Prevent thrombus formation with adequate anticoagulation

Assess inflow cannulation site by epiaortic ultrasound imaging

Cannulate distal aorta or axillary artery

Consider use of special aortic cannulas

Major Sources of Microemboli

Gas	Foreign	Blood
Bubble oxygenators	Atherosclerotic debris	Fibrin
Air entry into the circuit	Fat, fat droplets	Free fat
Residual air in the heart	Fibrin clot	Aggregated chylomicrons
Loose purse-string sutures	Cholesterol crystals	Denatured proteins
Cardiotomy reservoir	Calcium particles	Platelet aggregates
Rapid rewarming	Muscle fragments	Platelet-leukocyte aggregates
Cavitation	Tubing debris, dust	Hemolyzed red cells
	Bone wax, talc	Transfused blood
	Silicone antifoam	
	Glue, Surgicel	
	Cotton sponge fiber	

OXYGEN CONSUMPTION AND PERFUSION FLOW

CEREBRAL OXYGEN CONSUMPTION AND TEMPERATURE

MYOCARDIAL PROTECTION

Therapeutic Innovations for Myocardial Protection

Reference	Year	Innovation
Bigelow WG ²	1950	Studied the application of hypothermia to cardiac surgery in canines
Swan H	1953	Showed that hypothermic arrest (26°C) in humans provided a bloodless field for operating
Melrose DG, Bentall HH ³	1955	Introduced the concept of reversible chemical cardiac arrest in canines
Lillehei CW	1956	Detailed a method for delivering hypothermic crystalloid cardioplegia by cannulating coronary arteries
Lam CR	1957	One of the earliest known uses of the term "cardioplegia"
Gerbode F, Melrose DG	1958	Used potassium citrate to induce cardiac arrest in humans
McFarland JA	1960	Challenged the safety of the Melrose technique; changed from potassium arrest to intermittent aortic occlusion or coronary artery perfusion for myocardial protection

CARDIOPLEGIA

Components of Various Cardioplegic Solutions

	Usual components [*]							
Solution	Sodium	Potassium	Magnesium	Calcium	Bicarbonate	pН	Osmolarity (mOsm/L)	Other components
Bretschneider's no. 3	12.0	10.0	2.0	-	-	5.5–7.0	320	Procaine; mannitol
Lactated Ringer's	130.0	24.0	_	1.5	_	7.14	-	Lactate; chlorine
Tyer's	138.0	25.0	1.5	0.5	20.0	7.8	275	Acetate; gluconate; chloride
St. Thomas no. 2	110.0	16.0	16.0	1.2	10.0	7.8	324	Lidocaine
Roe's	27.0	20.0	1.5	_	_	7.6	347	Glucose; tris buffer
Gay/Ebert	38.5	40.0	_	_	10.0	7.8	365	Glucose
Birmingham	100.0	30.0	_	0.7	28.0	7.5	300–385	Glucose; chloride; albumin; mannitol
Craver's	154.0	25.0	_	_	11.0	-	391	Dextrose
Lolley's	_	20.0	_	_	4.4	7.78	350	Dextrose; mannitol; insulin

MEDIATORS OF ISCHEMIA-REPERFUSION INJURY -INTRACELLULAR CA2+ -REACTIVE OXYGEN SPECIES FORMATION

Methods and delivery of cardioplegic solutions

TYPE OF CARDIAC DISEASE ► Ischemic heart disease ► Revascularization Surgical treatment of complications of ischemic heart Postinfarction ventricular septal defect ► Left ventricular aneurysm Valvular heart disease ► Mechanical valve, bioprosthesis, repair ► Aortic valve disease Mitral valve disease

TYPE OF CARDIAC DISEASE ► Valvular heart disease Tricuspid valve disease Diseases of great vessel Aortic dissection ► Aortic aneurysm Adult congenital heart disease ► Cardiac tumor

Cardiac Surgery

Heart disease

Valvular heart disease

- Mitral valve
- Aortice valve
- Tricuspid valvé
- Pulmonic valve
- Coronary heart disease
- Congenital heart disease
- Abrtic aneurysm

- Etiology
 - Rheumatic disease
 - Degeneration
 - Congenital
 - Infection
 - Tumor
 - Trauma

- Physiology
 - Stenosis
 - Regurgitation
 - Defect

ISCHEMIC HEART DISEASE

PURPOSES

Restore blood flow to the heart Relieves chest pain and ischemia Improves the patient's quality of life Enable the patient to resume a normal lifestyle •Lower the risk of a heart attack

INDICATIONS

Patients with blockages in coronary arteries ► Patients with angina ▶ Patients who cannot tolerate PTCA (Percutaneous transluminal coronary angioplasty) and do not respond well to drug therapy Acute myocardial infarction Sever coronary artery disease

COMPLICATIONS

► Bleeding ► Heart attack Heart failure ► Arrhythmia Stroke ► Pleural effusions ► Wound infection ► Renal failure ▶ Death

CORONARY ANATOMY

From surgical point of view, coronary system is divided into 4 parts: **1-Left main coronary artery 2-Left anterior descending artery** (LAD)(and its diagonal branches) **3-Left circumflex artery** (and its marginal branches)

4-Right coronary artery (and its posterior descending branch [PDA])

ANATOMIC CONSIDERATIONS

- Left main disease: A significant lesion at the left main coronary artery, and this lesion affects blood flow to both left anterior descending artery and left circumflex artery.
- One-vessel disease: A significant lesion (or lesions) affecting one of the other three arteries or one of its large branches is considered
- Two-vessel disease and three-vessel disease: Significant lesions affecting two arteries or three arteries, respectively.

Coronary Angiography

Indications for CABG

1- Left main coronary artery stenosis : Stenosis >50%, as annual mortality 10-15%

Indications for CABG, cont.

2- Left main equivalent: > 70% stenosis of proximal left anterior descending (LAD) and proximal circumflex artery (PCA)

TECHNIQUES FOR CABG

- The standard approach
 midline sternotomy
- 1- **On-pump CABG (**traditional, conventional tech.) Arrested heart with cardioplegia , using Cardiopulmonary Bypass .
- 2- Off-pump coronary artery bypass (OPCAB)

With a beating heart and without the use of cardiopulmonary bypass.

On-pump CABG

 Very low mortality and morbidity
 Excellent results.
 The most widely used technique worldwide.

Off-pump coronary artery bypass (OPCAB)

>Newer technique with the proposed benefit of lower complication rates. Highly specialized technique with good results in the hands of surgeons who perform this surgery regularly.

Conduits for CABG

1- Left internal thoracic (mammary) artery (LITA, LIMA):
> Gold standard for LAD
> excellent long term patency (90-95% at 15 years).

CONDUITS FOR CABG

- LIMA should always be used unless:
 - 1) Emergency operation with hemodynamic decompensation,
 - 2) History of chest wall radiation or radical mastectomy,
 - 3)Proximal left subclavian artery stenosis,
 - 4) latrogenic injury or hematoma during harvesting,
 - 5) Insufficient flow due to small size or persistent spasm

CONDUITS FOR CABG

2- Reversed saphenous vein grafts (SVG)

- Commonly used especially when many grafts. such as triple or quadruple bypass are required
- Ten-year patency is 60-70%.
- The causes of graft failure are :
 - ≻ Thrombosis,
 - > Intimal hyperplasia
 - ➤ Graft atherosclerosis.

Reversed SVG

CONDUITS FOR CABG

- 3- Right internal thoracic (mammary) artery (RITA, RIMA)
- Used in bilateral internal thoracic (mammary) artery grafting
- Patients receiving bilateral IMAs:

➢Less risk of recurrent angina, BUT with →

Higher rates of sternal infection, dehiscence and mediastinitis especially in elderly, obese or diabetic patients
bilateral IMAs

Conduits for CABG 4-Radial artery

Approximately 85-90% patency at 5 years

Prone to severe vasospasm P.O. due to muscular wall; patients often placed on Calcium Channel Blockers.

RADIAL HARVEST

CONDUITS FOR CABG

5- Right gastroepiploic artery

- Used as an in situ graft or as a free graft if no alternative suitable conduit are available
- Infrequently used: due to
 - ➤The artery is fragile,
 - Small diameter at the site of distal anastomosis,
 - ➢ Possibility of vessel twisting,
 - >Increased operative time (need laparotomy incision).

Right gastroepiploic artery

AORTIC VALVE SURGERY

Valvular Abnormalities

Nodular Rheumatic Disease Aortic Root Dilation

Endocarditis

Grading of Aortic Stenosis

Grade	Aortic Valve Area (cm ²)
Mild	>1.5
Moderate	1-1.5
Severe	<1

AORTIC REGURGITATION

Echocardiographic stages of chronic aortic regurgitation

	Compensated	Transitional	Decompensated*
Dimensions			
End-diastolic dimension (mm)	<60	60 to 70	>75
End-systolic dimension (mm)	<45	45 to 50	>55
Volumes			
End-diastolic volume (mL/m2)	<120	130 to 160	>170
End-systolic volume (ml/m2)	<50	50 to 60	>60
Left ventricular function			
Ejection fraction (percent)	>55	51 to 55	≤50
Fractional shortening (percent)	>32	30 to 31	<29

SURGERY – PRIMARY ROOT DISEASE

Annuloplasty or other valve sparing surgery

FIGURE 66-17 Repair of aortic regurgitation caused by aortic root dilation. A, Remodeling of the aortic root with replacement of all three aortic sinuses. B, Reimplantation of the aortic valve in patients with annuloaortic ectasia. (From David TE: Aortic root aneurysms: Remodeling or composite replacement? Ann Thorac Surg 64:1564, 1997.)

Mitral valve disease

Mitral valve stenosis

Mitral valve regurgitation

MITRAL VALVE SURGERY Mitral valve replacement Mitral valve repair

MITRAL VALVE REPLACEMENT

MITRAL VALVE REPAIR

TRICUSPID VALVE DISEASE

Tricuspid valve regurgitation
Functional regurgitation
Organic regurgitaton
Tricuspid valve stenosis

TRICUSPID INDICATION

► Tricuspid annular diameter
► Tricuspid pressure gradient
► Mean ≥ 5 mmHg

lla

Ĉ

C

Surgery is indicated in patients with severe primary, or secondary, TR undergoing left-sided valve surgery.

Surgery should be considered in patients with mild or moderate secondary TR with dilated annulus (\geq 40 mm or > 21 mm/m²) undergoing left-sided valve surgery.

TRICUSPID CAUTION

TRICUSPID ANNULOPLASTY

TRICUSPID VALVE REPAIR

DISEASE OF AORTA

Aortic dissectionAortic aneurysm

AORTIC DISSECTION

Clinical Characteristics of Patients Presenting with Acute Type A and B Thoracic Aortic Dissections

	Type A	Туре В
Frequency	60-75%	25-40%
Sex (M:F)	1.7–2.6:1	2.3–3:1
Age (y)	50–56	60–70
Hypertension	++	+ + +
Connective tissue disorder	++	+
Pain Retrosternal Interscapular	+++ +,-	+,- +++
Syncope	++	+-
Cerebrovascular accident	+	-
Congestive heart failure	+	-
Aortic valve regurgitation	++	+,-
Myocardial infarction	+	-
Pericardial effusion	+,-	+++
Pleural effusion	+,-	+,-
Abdominal pain	+,-	+,-
Peripheral pulse deficit	Upper and lower extremities	Lower extremities

Risk Factors for Type A and B Thoracic Aortic Dissection

Hypertension

Connective tissue disorders Ehlers-Danlos syndrome Marfan disease Turner syndrome

Cystic medial disease of aorta

Aortitis

Iatrogenic

Atherosclerosis

Thoracic aortic aneurysm

Bicuspid aortic valve

Trauma

Pharmacologic

Coarctation of the aorta

Operative Indications for Acute and Chronic Type A and B Thoracic Aortic Dissection

Dissection type	Operative indication
Acute	
Type A	Presence
Type B	Rupture
	Malperfusion
	Progressive dissection
	Failure of medical management
Chronic	
Type A	Symptoms related to dissection
	(congestive heart failure, angina,
	aortic regurgitation, stroke, pain)
	Malperfusion
	Aneurysm
Type B	Symptoms related to dissection
71	Malperfusion
	Aneurysm

AORTIC DISSECTION SURGERY

AORTIC ANEURYSM

ASCENDING AORTIC SURGERY

THORACOABDOMINAL ANEURYSM

ENDOVASCULAR REPAIR

Cardiac tumor

□ Primary tumors of the heart RARE (.0017 - .28%)

□ Often BENIGN (75%)

□ Potential for life-threatening complication

□ Curable by surgery

Incidence of benign heart tumors

	incidence		
TUMOR	Adults	Children	Infants
Myxoma	46	15	0
Lipoma	21	0	0
Papillary fibroelastoma	16	0	0
Rhabdomyoma	2	46	65
Fibroma	3	15	12
Hemangioma	5	5	4

Incidence of primary malignant heart tumors

	Incidence(%)		
TUMOR TYPE	Adults	Children	Infants
Angiosarcoma	33	0	0
Rhabdomyosarcoma	21	33	66
Mesothelioma	16	0	0
Fibrosarcoma	11	11	33
Malignant lymphoma	6	0	0
Myxoma

- most common primary cardiac neoplasm.
 most often attached to the atrial wall, but can arise on a valve or in a ventricle.
- produce a "ball valve" effect by intermittently occluding the atrioventricular valve orifice.
- Embolization of fragments of tumor may also occur.

Easily diagnosed by echocardiography.

RV lymphoma

- □ Female, aged 48 years,
- Presented with Dyspnea and palpitation, edema
- □ Echo: Mass at RVOT

Cardiac lymphoma. (A) T1-weighted, (B) T2-weighted and (C) gadolinium-enhanced images. Multiple regional myocardial hypertrophy can be seen with abnormal signal intensity on the T2-weighted and the gadolinium-enhanced images. The hypertrophy is very localized (arrows) around the inferior interventricular groove, involving the right ventricle, septum and inferior wall of the left ventricle. Late gadolinium imaging demonstrates hyperenhancement due to interstitial expansion that is likely to be fibrosis or odema. (D) Hematoxylin- and eosin-stained section showing admixed histiocytes, blood vessels, lymphocytes and plasma cells. This tissue was infiltrating and destroying the myocardium and overlying pericardium. Magnification is ×400.

Cardiac lipoma

Female, aged 32 years Presented with palpitation Echocardiographic Diagnosis: pericardial cyst Opearative Finding Shown: X clamp time: 41 mins CPB time: 58 mins

TYPE OF CONGENITAL HEART DISEASE

- ACYANOTIC CONGENITAL HEART DISEASE : Lt TO Rt SHUNT
 - ASD SECUNDUM
 - ASD PRIMUM
 - VSD
 - PDA

- CYANOTIC CONGENITAL HEART DISEASE : Rt TO Lt SHUNT
 - TOF
 - EBSTEIN'S ANOMALY

Coarctation of Aorta

Amplatzer Septal Occluder for ASD

SURGERY

SURGERY

SURGERY

ASD PRIMUM

CONDUCTION

Figure 20-12 Diagrammatic sketch of the course of atrioventricular (*AV*) node, His bundle, and right bundle branch in common AV septal defect, right atrial and ventricular view. (Sinoatrial node is normal.) (From Lev.^{L4})

Key: ●, Atrioventricular node; ▲, penetrating portion of the atrioventricular bundle; ● , branching portion of the atrioventricular bundle; , right bundle branch; 1, superior vena cava; 2, inferior vena cava; 3, limbus; 4, patent foramen ovale; 5, cut edge of atrial appendage; 6, entry of coronary sinus; 7, base of atrioventricular valve; 8, atrioventricular septal communication; 9, infundibulum; 10, base of pulmonary valve; 11, muscle of Lancisi; 12, cut edge of moderator band.

Ventricular Septal Defect (VSD)

-Most common defect in children, 90% spontaneously close by 10 yrs old

-10% of all defects in adults

1. Supracristal (5%)2. Perimembranous (70%)3. Posterior4. Muscular (20%)

TRANS ATRIAL CLOSURE

TRANS VENTRICULAR REPAIR

Ductus Arteriosus

© Frank Netter, MD Novartis®

TRIPLE LIGTIONS

DIVISION

DIVISION

Tetralogy of Fallot (TOF)

- Most common cyanotic condition in older kids and adults
- Key features:
 - Large VSD
 - Aorta that overrides left and right ventricles
 - Obstruction of RV outflow tract
 - RV hypertrophy

SEVERITY OF PULMONARY ARTERY

TRANS ATRIAL APPROACH

EBSTEIN'S ANOMALY

Described by "Wilhelm Ebstein"
 German Pathologist year 1866

<u>Modified Gordon K.Danielson technique</u>

TV REPLACEMENT TECHNIQUE

Coarctation of Aorta

- 6-8% of all CHD
- 2-5x more frequent in males
- Associations:
 - Bicuspid aortic valve
 - VSD
 - PDA
 - MS/MR
 - Multiple LV obstructive lesions (Shone syndrome)
 - Intracerebral aneurysms
 - Turner's Syndrome

COARCTATION REPAIR

Surgical correction

 Patch aortoplasty with removal of segment and end to end anastomosis or subclavian flap repair
 bypass tube grafting around segment

Edmunds' Cardiac Surgery in the Adult, Ch 47

THORACIC SURGERY

Pulmonary disease ► Lung cancer ▶ Pneumothorax Empyema thoracis Thoracic incision Pleural drainage

LUNG CANCER PATHOLOGY

► Small cell ► Non small cell ► Squamous cell carcinoma ► Adenocarcinoma ► Large cell carcinoma Undifferentiated cell carcinoma

ASSESSMENT OF PATIENT

► Fitness for surgery

Operability of the tumour - Staging

T size and position of tumour N lymph node status M metastasis

Stage Grouping—TNM Subsets

- Stage 0 (TisN0M0)
- ► Stage IA (T1N0M0)
- Stage IB (T2N0M0)
- ► Stage IIA (T1N1M0)
- Stage IIB (T2N1M0, T3N0M0)

Surgery+Neoadjuvant

- ► Stage IIIA (T3N1M0), (T(1–3)N2M0)
- ► Stage IIIB (T4, Any N, M0) (Any T, N3M0)
- ► Stage IV (Any T, Any N, M1)
Small Cell Lung Cancer

Stage IA of Lung Cancer

Stage IB of Lung Cancer

Stage IIA of Lung Cancer

Stage IIB of Lung Cancer

Stage IIIA of Lung Cancer

Stage IIIB of Lung Cancer

Stage IV of Lung Cancer

IV:

FITNESS FOR SURGERY

Pulmonary function

Age

- Cardiovascular function
- Medical conditions
- Nutritional Status
- Performance status

ASSESSMENT OF OPERABILITY

CT scan
Bone scan
PET scan
Mediastinoscopy
Anterior Mediastinotomy
VATS

Bronchoscopy

Mediastinoscopy

Mediastinotomy / Chamberlains

Mediastinotomy

Thoracotomy

Thoracotomy - Posterolateral

Posterior end of incision

Anterior end of incisio

Thoracotomy - Anterolateral

MINI THORACOTOMY

Small incision thoracotomy

LUNG RESECTION

Pneumonectomy
Lobectomy
Wedge

Lung Resection – Pneumonectomy

Figure 24.2

Figure 24.3

igure 24.7

Lung Resection – Lobectomy

3 Lobes on RT RUL RML RLL (not RUL & RLL)

2 lobes on LT LUL

BRONCHUS

Lung Resection – Lobectomy (RUL)

Lung Resection – Lobectomy (RUL)

AVAILABLE TISSUE

INTERSTITIAL LUNG DISEASE

LUNG BIOPSIES

► Need tissue to diagnose "Interstitial lung disease"

Pneumothorax

VATS for Pneumothorax

Catamenial Pneumothorax and Liver Protrusion : An Unusual Presentation

Chaiwut Yottasurodom, M.D. Central Chest Institue of Thailand August 4, 2012

INTRAOPERATIVE FINDING

INTRAOPERATIVE FINDING

INCISION

Posterolateral incision

INCISION

Anterolateral incision

Median sternotomy

Clampshell incision

Thoracosternotomy

Anterior mediastinotomy

Video Assisted Thoracic Surgery

CHEST DRAINS

Insertion site Type of chest drainage system: one, two, three bottle

Insertion site

Triangle of safety(in mid axillary line) - 4th or 5th ICS

- Ant.border of latissimus dorsi
- Lateral border of pectoralis major
- Line superior to horzontal level of nipple
- Apex below axilla
- Midclavicular -2nd ICS
 - Thick pectoralis major –difficult to penetrate
 - Scar-cosmetic

One bottle chest drainage system

- Water seal –low resistance one way valve
- Positive pressure > +2cm H2O
- Tidalling –pressure changes in the pleural space with breathing seen as fluctuations
- Combination of water seal and fluid collecton bottle

Two bottle chest drainage system

- Collection bottle and water seal
- Amount and rate of fluid drainage can be measured
- Water seal remain fixed
- Rely on gravity to create pressure gradient

Three bottle chest drainage system

POST OPERATIVE CARE

Blood pressure ► Blood gases / saturation ► Urine output ► Bleeding ► Sputum ► Analgesia

CONCLUSION

Cardiac sugery Cardiopulmonary bypass ► Cardiac surgical disease ► Thoracic surgery ► Thoracic diseases ► Thoracic incision ► Thoracic procedure

Thank you for your attention

Chaiwut Yottasurodom, M.D.